Skip to main content

Understanding Dynamic Arrays and Objects in C++

 Understanding Dynamic Arrays and Objects in C++

  • Dynamic Arrays: In C++, arrays are typically fixed-size at compile time. Dynamic arrays, also known as std::vector, provide a flexible way to create arrays whose size can be determined or modified at runtime. They automatically manage memory allocation and deallocation, reducing the risk of memory leaks.
  • Objects: Objects encapsulate data (member variables) and behavior (member functions) within a self-contained unit. In OOP, objects interact with each other through method calls, adhering to the principles of data abstraction, encapsulation, inheritance, and polymorphism.

Creating Dynamic Arrays of Objects

There are two main approaches to create dynamic arrays of objects in C++:

  1. Using std::vector:

    C++
    #include <iostream>
    #include <vector>
    
    class Point {
        int x, y;
    public:
        Point(int xVal, int yVal) : x(xVal), y(yVal) {}
        void print() const {
            std::cout << "(" << x << ", " << y << ")" << std::endl;
        }
    };
    
    int main() {
        // Create a dynamic array of 5 Point objects
        std::vector<Point> points(5);
    
        // Initialize the objects' values
        for (int i = 0; i < 5; ++i) {
            points[i] = Point(i, i + 1);
        }
    
        // Access and manipulate objects
        for (const Point& point : points) {
            point.print();
        }
    
        return 0;
    }
    

    In this example:

    • The std::vector class template is used to create a vector points that can hold Point objects.
    • The constructor std::vector<Point>(5) initializes the vector with 5 default-constructed Point objects.
    • A loop iterates over the vector, initializing each Point object with specific values using its constructor.
    • Another loop iterates over the vector, accessing and printing the objects using the print() method.
  2. Using new and delete (manual memory management):

    C++
    #include <iostream>
    
    class Shape {
    public:
        virtual void draw() const = 0;
        ~Shape() = default; // Destructor for proper memory deallocation
    };
    
    class Circle : public Shape {
        int radius;
    public:
        Circle(int radiusVal) : radius(radiusVal) {}
        void draw() const override {
            std::cout << "Drawing a circle with radius " << radius << std::endl;
        }
        ~Circle() override {
            std::cout << "Deleting Circle object" << std::endl;
        }
    };
    
    int main() {
        // Create a dynamic array of 3 Shape pointers
        Shape** shapes = new Shape*[3];
    
        // Allocate and initialize objects
        shapes[0] = new Circle(5);
        shapes[1] = new Circle(10);
        shapes[2] = new Circle(15);
    
        // Call methods on the objects
        for (int i = 0; i < 3; ++i) {
            shapes[i]->draw();
        }
    
        // Deallocate memory manually
        for (int i = 0; i < 3; ++i) {
            delete shapes[i];
        }
        delete[] shapes;
    
        return 0;
    }
    

    In this example:

    • An abstract base class Shape is defined with a virtual draw() method.
    • A derived class Circle inherits from Shape and implements the draw() method.
    • A pointer array shapes is dynamically allocated using new to hold Shape pointers.
    • Individual objects are created using new and assigned to the corresponding elements in the array.
    • The virtual draw() method is called on each object using polymorphism.
    • Memory is manually deallocated using delete for each object and then for the array itself.

Key Considerations and Best Practices

  • Prefer std::vector for most cases: std::vector offers automatic memory management, safer bounds checking, and iterator-based access

Comments

Popular posts from this blog

C++ Variable

C++ Variables: Named Storage Units In C++, variables serve as named boxes in memory that hold values during program execution. Each variable has three key aspects: 1. Data Type: Defines the kind of data a variable can store: numbers (integers, floating-point, etc.), characters, boolean values (true/false), or custom data structures (arrays, objects). Common data types: int : Whole numbers (e.g., -10, 0, 23) float : Decimal numbers (e.g., 3.14, -2.5) double : More precise decimal numbers char : Single characters (e.g., 'a', 'Z', '&') bool : True or false values 2. Name: A user-defined label for the variable, chosen according to naming conventions: Start with a letter or underscore. Contain letters, digits, and underscores. Case-sensitive (e.g.,  age  and  Age  are different). Not a reserved keyword (e.g.,  int ,  for ). Choose meaningful names that reflect the variable's purpose. 3. Value: The actual data stored in the variable, which must match its data...

C++ Functions

C++ Functions A function is a block of code that performs a specific task. Suppose we need to create a program to create a circle and color it. We can create two functions to solve this problem: a function to draw the circle a function to color the circle Dividing a complex problem into smaller chunks makes our program easy to understand and reusable. There are two types of function: Standard Library Functions:  Predefined in C++ User-defined Function:  Created by users In this tutorial, we will focus mostly on user-defined functions. C++ User-defined Function C++ allows the programmer to define their own function. A user-defined function groups code to perform a specific task and that group of code is given a name (identifier). When the function is invoked from any part of the program, it all executes the codes defined in the body of the function. C++ Function Declaration The syntax to declare a function is: returnType functionName (parameter1, parameter2,...) { // func...

C++ Data Types

C++ Data Types In C++, data types are crucial for defining the kind of information your variables can hold and the operations you can perform on them. They ensure memory allocation and prevent unexpected behavior. Here's a breakdown of the key data types: Fundamental Data Types: Integer:   int  - Used for whole numbers (negative, zero, or positive). Examples:  int age = 25; Floating-point:   float  and  double  - Represent decimal numbers.  float  offers less precision but faster processing, while  double  is more precise but slower. Examples:  float pi = 3.14159; double distance = 123.456789; Character:   char  - Stores single characters (letters, numbers, symbols). Examples:  char initial = 'A'; Boolean:   bool  - Represents true or false values. Examples:  bool isLoggedIn = true; Void:   void  - Indicates a lack of value. Primarily used...